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The time-dependent magnetohydrodynamic 
flow past a flat plate 

By G. F. CARRIER AND H. P. GREENSPAN 
Pierce Hall, Harvard University 

(Received 17 April 1959) 

Two time-dependent magnetohydrodynamic flow problems are discussed. In  
Part I we consider the situation in which a semi-infinite flat plate is moved 
impulsively in its own plane into an electrically conducting viscous fluid. The 
ambient magnetic field has the same direction as the motion of the plate; it is 
found that when ,uHilpUi < 1, the flow pattern approaches asymptotically the 
steady flow found earlier {Greenspan & Carrier 1959). When pHi/pU: > 1, the 
asymptotic state is one in which the fluid accompanies the plate in a rigid body 
motion as was anticipated in the earlier work. 

In  Part 11, an infinite plate is moved impulsively in its own plane in the 
presence of an ambient magnetic field which is perpendicular to the plane of the 
plate. It is shown that the problem is not uniquely set until one specifies what 
three-dimensional problem reduces in the limit to the two-dimensional problem 
so defined. The answers in the conceptually acceptable limit case investigated 
here (the plate being a pipe of very large radius) have an asymmetry which at  
first sight is unexpected. 

PART I. THE SEMI-INPINITE PLATE PROBLEM 
1. Introduction 

A recent paper (Greenspan & Carrier 1959) reports a study of the steady flow 
of a viscous, incompressible, electrically conducting fluid past a flat plate in the 
presence of a magnetic field. The unexpected result of that investigation which 
aroused our interest in the transient problem states that a steady flow with 
uniform velocity far from the plate can exist only when the ambient fluid speed is 
greater than the Alfven speed based on the ambient magnetic field (i.e. only when 
pUi/,uH% > 1). Here, we report the results of a study of the transient problem 
wherein the motion starts from rest a t  time zero. Specifically, we formulate the 
transient problem, linearize it using the modified Oseen technique, solve the 
linearized problem in a formal way, and, using approximation methods, find 
a relatively simple description of the flow which is valid for large time. The results 
are consistent with those of the steady-flow problem and no further surprises 
appear. The investigation, therefore, may be of more interest as an example of 
a generally applicable technique for extracting simple quantitative approximate 
descriptions of phenomena whose precise description is impeded by the details of 
a non-elementary ‘Wiener-Hopf problem ’. 
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2. The flow problem 
The fundamental laws governing the flow of a conducting fluid in a magnetic 

field are Maxwell's equations and the conservation of mass and momentum. When 
the fluid is viscous and the speed is everywhere small compared to c (the speed of 
light), these equations take the form 

vr(v. grad) v = p-1 gradp =/ ,up-l(j x H) + VAV, 

(2.1) 1 divv = 0, 

curlH = j, 
curl E = - H,, 

divH = 0, 

j = cr(E+,uv x H). 
div E = 0, 

Here v is the particle velocity, H the magnetic field, E the electric field, j the 
current density, cr the electrical conductivity, ,u the permeability of the fluid, 
p the mass density, p the pressure and v the kinematic viscosity. 

We consider here the flow of such a fluid past the semi-infinite plate lying in 
y = 0, x > 0. The ambient magnetic field of intensity H, is uniform and is parallel 
to the x-axis. The plate is given a velocity U, in the negative x-direction a t  time 
zero and we wish to describe the ensuing flow field. If we regard this problem as 
the limit as R -+ co of another problem in which the plate is replaced by a pipe of 
radius R, the symmetry is such that no field quantities depend on the z co-ordinate. 
Note, however, that the current j and the electric field E will be directed in the 
z direction. The introduction of the vector potentials v = U, curl k$(x, y, t )  and 
H = Bo curl k A(x, y, t )  then allows us to simplify equations (2.1) to the form 

AA$- $ u ~ $ x + $ x ~ $ u - ~ $ ~ + + ( A ~ ~ A ~ - A x ~ A u )  = 0, (2.2) 
AA-s($,A,+At-$-,A,) = 0. (2.3) 

In  the foregoing x = Uox'/v, y = U,y'/v, t = U%t'/v, x', y', t', are the physical 
co-ordinates, p = ,uH$/pU$, s = pvu, A is the Laplace operator in x, y, and all 
differential operations are taken with regard to the x, y, t co-ordinate system. 

Equations (2.2) and (2.3) indicate that @ and A are governed by a balance of 
diffusive and convective transport; it is known (Carrier & Lewis 1949; Greenspan 
& Carrier 1959), that in such problems the 'convective coefficients' $,, $x, A,, A, 
of (2.2) can be replaced by appropriately chosen averages. One rationalizes this 
by noting, for example, that the net convective effect in (2.2) of the terms 
@, A$x - $x A$, = UQ, + vQ, (where u, v is the velocity and Q the vorticity) may 
be equivalent to a uniform horizontal convection at  speed cU, where 0 -= c < 1. In  
the classical viscous-flow-past-a-flat-plate problem the choice c = 0.35 gives 
remarkably accurate results. The character of the results is not affected by the 
choice of c, although the numbers which emerge do depend on c. Since our 
objective here is to determine the nature of the flow and its dependence on 
cr, p, H,, etc., we will not optimize the choice of these averages but will merely 
replace $,and A,in (2.2) and (2.3) by unityandreplace $,andA,in (2.2) by zero. 
With this 'averaging' of the convective effects, (2.2) and (2.3) become 

AA$-A($z+@L-&Q = 0, (2.4) 
(2.5) AA -€(A,  + At - $,) = 0. 
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Note that any other choice for the averages of $u, $x, etc., would lead to equations 
which transform to (2.4) and (2.5) when the co-ordinates are scaled differently. 
This assures us that the nature of the results cannot be different for different 
choices of these quantities. 

In  view of the symmetry of the problem the boundary conditions require that 
$(x, 0, t )  = A(x,  0, t )  = 0, Ilry(z, 0, t )  = x(t) when x > 0,  $(x, y, t )  and A(x, y, t )  + 0 
as Im (x +iy)* + co, and that $uu,(x, y; t )  and A,(%, y, t )  be continuous at y = 0. 

If we define the Fourier-Laplace transforms of the potentials by 

(2.6) 
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The functionf(() of (2.12) can be found, in principle, by computing E+(c, s) and 
E-((, s), the two factors of E((,  s) which are analytic functions of [in overlapping 
upper and lower half planes.? Such factors exist provided is replaced by 
,/(% + m2) and the limit m -+ 0 is taken subsequently. Since $,(x, 0, t )  is unity for 
x > 0, t > 0, and is not known for x < 0, t > 0, we may write 

$JZ, 0, $1 = &t) fJ(4 + V(z ,  t ) ,  (2.15) 

where V is zero when either t < 0 or x > 0. It follows that 

*;(t-, 0,s) = 1- Q5 4, 
where 7 is analytic in 6 in some upper half plane whenever s > 0. Equation (2.12) 

can now be written 2([i(s]-l+ V )  =fE+E-. (2.16) 

The usual arguments of the Wiener-Hopf method lead to the result 

P = 2/[E+(O, 4 u 5 s )  i691, (2.17) 

and the inversion off over [ and s completes the calculation of f ( x ,  t) .  Since f is 
twice the skin friction on each side of the plate, the character of the flow field can 
be inferred directly; if more details are wanted, $*((, y,s) as defined in (2.11) 
must be inverted to obtain $(x, y ,  t) .  The calculation alluded to here is not very 
useful because E+ and E- are such exceedingly messy functions that no rela- 
tively straightforward description off (x, t )  can be so obtained. Since our objective 
is an interpretable description we shall obtain one a t  a minor sacrifice in accuracy. 
Equation (2.12) as well as its special forms (2.13) and (2.14) areeach equivalent to 
an integral equation 

I/?;(., 0,s)  = iom f *(XI, s) K ( x  - x’, 8) dx’, (2.18) 

where $: and f * are the transforms of $, andf with regard to t only and K is the 
function whose x transform is E((, s). If the kernel K(x,  s) of (2.18) is replaced by 
a suitable substitute kernel, N(x,s) ,  the solution of the ao modified integral 
equation cannot differ markedly from that of (2.18). In  particular, if N ( x ,  s) and 

K(z ,  s) have the same area, K(x,  s) dx, the same first moment, 

same singularity at x = 0, and if K(x,  s ) /N(z ,  s) tends uniformly to unity as s -+ 0 
the solutions of these integral equations will have identical gross features for 
t % 1. A more comprehensive argument on this point will be published elsewhere.$ 
It is simpler to choose the substitute kernel, N ,  for special cases first; when 
/3 < 1, the case 8 = 1 is an especially convenient one. A suitable choice for 
N ( x ,  s) is best described in terms of m((, s); in fact, that R((, s) for which each of 
the foregoing considerations is met and which is easily factored$ is given by 

(2.19) 

where 

found, for example, in Greenspan & Carrier, 1959. 

method of choosing the kernel is that of Carrier (1959). 

cc = [( 1 + p)-i + ( 1  - p)-+ 
t The details of the Wiener-Hopf process are deliberately omitted here but may be 

$ The original suggestion that this substitution is useful is due to Koiter (1954). The 

$ N would have no advantage over K if it were not easily factored. 
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Equation (2.17) now gives 
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f = 2[{8 + i( 1 + @) t}-i + (8 + i( 1 - @) 6}4] its 

and this can be inverted explicitly to obtain 

(2.20) 

Simply stated, (2.21) implies that: For 0 < z < (l--.JP)t the skin friction is 
precisely that of the steady-state problem; further downstream, for x > (1 +. J/3) t 
in fact, the skin friction is that which an infinite plate would experience. In  
(1 - J/?) t < x < (1 + 4/3) t a smooth transition occurs. Note that when p < 1, both 
Alfven waves (the one going with the fluid and that going against the fluid) go 
downstream relative to the plate. Behind the slower one the steady state prevails 
and ahead of the faster the fluid does not know the plate has a front edge. These 
statements would be mildly modified by the diffusive effects that are suppressed 
by our substitution of N for K .  

The corresponding approximations can be written down for all E. The results 
are intrinsically the same as those for E = 1; in‘x < ( 1  - 4/3) t the steady flow 
prevails, in x > (1 + Jp) t the infinite plate flow occurs. Since v and H are pre- 
cisely parallel in the infinite plate problem, H plays no role in determining the 
flow field in x > (1 + 4/3) t. In  (1  - Jp) t < x < (1 + ,/p) t the foregoing regions are 
joined smoothly. 

When p > 1, an Alfven wave can travel upstream relative to the plate and the 
phenomenon is very different from that associated with /3 < 1. In  this instance 
the situation in which E --f 00 provides the simplest example. The K ,  of (2.14) is 
replaced by 

1, = ( ( i t+8)/[ i[+8/( l -4p)]  [it+s/(l +4p)] [1-/3-4it]}*. (2.22) 

When p < 1, this substitution is consistent with the foregoing results, but when 
p > 1, r+ becomes i<+ s(1- ,/@)-* instead of [l -p- 4i6]-*, its value when 
p < 1. In  this casef(6, 8) is given by 

f = 2[{8 /~ -4p)} { i t+4(1  +4m (1 -~4 i t ) / ( i t+41+/ i t8 .  (2.23) 

The functionf(x, t )  obtained by invertingftends to zero at a rate governed by 
the factor t-*. Thus, the-pe@ction that the only steady flow for p > 1 is one in 
which the fluid and plate undergo a rigid body motion, is substantiated. 

Again the same type of approximation can be chosen for all E and the same 
result emerges. That is,f + 0 like t-4 for all E. Note that iff --f 0 as t 3 co, $Jx, y, t )  
must tend to - 1 for all x, y as t -+ co. 
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PART 11. RAYLEIGH MOTION IN A MAGNETIC FIELD 
3. Introduction 

One of the clasaical problems of viscous fluid theory whose study has aided our 
understanding bf the dynamics of such fluids is that in which an infinitely 
extended thin plate is immersed in an unbounded viscous fluid and, at time zero, 
is suddenly given a constant velocity in its own plane. There are many magneto- 
hydrodynamic extensions of this problem which can be defined; one of these 
which'is informative and which provides a few surprises is the following. 

f 

( h )  

FIUUFLE 1. The geometry of the cylindrical problem and its limit, the.plate problem. 

Let there be a uniform ambient magnetic field perpendicular to the plane of the 
plate and let the geometry be considered as the limit as R -+ ca of a situation 
wherein a pipe of radius Ris exposed to such an ambient magnetic field and receives 
a step-function axial velocity at  time zero. These geometries and the co-ordinate 
systems to be used are shown in figure 1. The use of this particular limiting process 
allows us to specify that the field quantities are dependent only on the time and 
on r,  the co-ordinate perpendicular to the plate. In particular, since no electric 
charge can accumulate because of the axial symmetry, the electric field intensity, 
E, must become zero when the steady state has been achieved (i.e. after t has been 
allowed to become infinite). If this problem is solved for the geometry of 
figure 1 a, an answer can be obtained, but after taking the limit t + co it is readily 
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seen that the velocity distribution is of the form A + B e-blul, where A ,  B and b, 
depend on the physical parameters of the problem, E is not zero, and the solution 
is not interpretable in terms of the postulated problem. This solution corresponds, 
in fact, to a situation in which charge is allowed to accumulate in a very artificial 
manner. It appears then, that one must solve the cylindrical problem and investi- 
gate, carefully, the behaviour as R-tm.  Since the solution to the cylindrical 
problem contains the description of the solution of the plate problem mentioned 
above, we shall not develop the plate solution separately. Specifically, then, we 
shall treat the geometry of figure 1 b where the solid core of radius a is fixed in 
space and has conductivity g1 and permeabilitypl; the fluid in the annular region 
a < r < R is identical with that in r > R and has conductivity g, permeability p, 
kinematic viscosity v,  and density p ;  the indefinitely thin solid sheet a t  R, whose 
electrical properties do not influence the problem, has the motion Uh'(t) in the 
axial direction. The fluid is a t  rest, E is zero and H = PH,R/r until time zero. The 
ambient magnetic field adopted here could not be produced precisely in an 
experiment but neither could the uniform fields of infinite extent which we 
postulate in other problems whose study improves our understanding of these 
magneto -hydrodynamic phenomena. 

4. Analysis of the cylindrical problem 
The physical laws governing the phenomenon in r > R are again given by (2.1). 

We introduce cylindrical co-ordinates r ,  8,x, and define the following dimension- 
less quantities, 

h 

= Ur/v,  r = U2t/v, H = H,[t'(R/r)+&h], E = pH0U@, v = U U ~ ,  
k = RU/v, b = aU/v,  p = pH$/pq ,  e = pvcr. 

The equations then become 

( r ,q ,  + Pkh, - 7% = 0, (4.1) 
(4.2) 

(rss), +7h, = 0.J (4.3) 

( r h , ) , - w %  = 0, (4.4) 

and $J = - ( 4 G l )  h,, (4.5) 

where = PlgllPg. 

rhv +sku + ET,$ = 0, 4' 

In  the core, since the properties are different from those of the fluid and since 
the velocity is zero, we have, instead of (4.2) and (4.3), 

The solutions of (4.1), (4.2) and (4.3) are elementary only when e = 1. For 
other e, the behaviour of the system is different only in detail; we shall indicate 
the nature of this distinction later, but will develop only the case e = 1. 

Withe = 1 then, the Laplace transforms of the solutions of (4.1), (4.2) and (4.3), 
which vanish as 7 -+ co can be represented in the form 

wr7 4 = A(r/k)"%(r 44 +B(r/k)-"%(r &), 

m, 4 = - h, - kZlr,  

(4.6) 
(4.7) 

(4.8) 

- wl, 8) = - A ( r / 4 " L ( r  - 44 + B(r/k)-" K,(r 44, 

where rn = k J/3/2. 
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In the annular region, b < 7 < k, the fields are given by (4.8) and by 
- Mr, 4 = C(r/k)" Km(r 44 + D(r/k)" I m ( r  44 + E(r/k)-m Km(r44 

h, 8) = - C(r/k)"Krn(r 4.1 -@r/Wm4&I 44 + w l / ~ ) - n z ~ r n ( r  44 
+F(rlk)-"4n(r 443 (4.9) 

+ F(r/k)-" L ( r  4s).  (4.10) 
In the core: E = G4474[~sI ) ,  (4.11) 

and @ = - &s) G U r  J(& (4.12) 

where w = a;u,/~~,p. The boundary conditions require that 

- 

U(k + , s )  = l/s, Z ( k + , s )  = f l ( k - , s ) ,  $ ( k + , s )  = $ ( k - , s ) ,  

U ( k + , s )  = U ( k - , s ) ,  G(b,s) = 0) E(b + , s )  = E(b - , 8)) $(b + , s )  = $(b - ) 8). 

Using (4.6) to (4.11) inclusive, these boundary conditions become, in matrix 
form (with unchanged order), 

MijAj = C?,,S-~, (4.13) 

where A ,  is the vector ( A ,  B, . . . , G )  and Mij is the following matrix. 

Km(k 4.1 Km(kJs) 0 0 0 0 0 
-Km(kJs )  Km(kJ8) K m ( k  J 4  Im(kJs )  -Km(k J s )  -I,@ J4 0 
Km-i(k Js) -Km+,(k J s )  -Km-,(kJa) Irn-l(kJs) Km+l(k J s )  Im+l (k  J s )  0 
-Km(k 4.1 - K,(kJs) K,(k J.1 I,@ J4 Km(kJ8)  Im(k  Js)  0 

0 0 (;)mKm(bds) ( ; )mIm(bda)  (;)-mKm(bJs) ( i ) -mIm(b  J8) 0 

m 

0 0 - (i) Km(bJ4 - (;)mIm(bJ4 ( i ) -mKm(bJs)  (;)-Im(bJe) - 2 J P I d b J s )  

0 0 (i)mKm-l(bds) - ( i )m1. . - l (bJ4 - ($-mKm+l(b 48) ( i ) -mIm+l(bJ4 - ~ J P J U ~ ~ ( ~ J ~  

It is especially convenient to represent each of the field quantities by the ratio of 
two determinants. In  particular, the velocity in the outer fluid is given by 

i i ( 7 , ~ )  = M * / M ,  (4.14) 

- where Jl is the determinant of Mij and M* is the same determinant with the first 
row replaced by the entries [s-l(r/k)"K,,(r 4s))  t ~ l ( q / k ) - ~ K ~ J y , / s ) ,  0, 0, 0, 0, 01. 
The numerator determinant for the velocity in the annulus would have a top row 
in which the third to sixth entries inclusive are l/s times the factors of C ,  D,  E ,  F ,  
in (4.9). Equally simple forms obtain for each of the other quantities of interest. 
However, the useful information can $1 be deduced for (4.14). It is evident that 
the direct inversion of M*/M would be very difficult; it is therefore profitable to 
consider the behaviour of M*/M for very large k. To do this we divide the columns 
of both M* and M by Mil, M12, MZ3, MZ4, - MZ5, - Mze, M2,, respectively. We then 
examine each entry and replace it by its limit as k -+ co only if that limit is valid 
for all non-negative s. It is especially important to avoid replacement when the 
limit sequence s -+ 0, k -+ co, provides a different result from that of the sequence 
k --f m, s -+ 0. The significance of this is more easily understood when the results 
have been obtained. 

Fortunately, asymptotic representations of R,(x) and Im(z), valid for large m 



30 G. P. Carrier and H .  P .  Greenspan 

and for all real non-negative z are readily available and we can list the pertinent 
information. In  particular (with 7 = k + y, y < k ,  b Q k ) ,  

The use of these allows us to evaluate (4.14) and obtain 
T 4% 8) = s exp { - Y W  + - tP411 

where 

For real non-negative s, T can be expanded to give 

T = I - -  2 n=O E [(f~+l)g(-rn,s)/2~(rn,s)ln)(l-e-”dp)(fe~-l) 
1 {  OD co 

= 4( 1 + e - Y d p )  - &( 1 - e-vdp) Z [+g( - rn, s)/g(m, s)]” + Q(7, s). 

This series can be inverted term by term and the first term is precisely 

n=l 

Here Q(7, s) is essentially linear in s for small s. 

The subsequent terms are most readily estimated (with great accuracy for large 
‘time’ T )  by the method of steepest descent. For example, the next term is 

When the saddle point of the exponent lies to the right of the origin, the 
integral is of order r-4; when it lies to the left of the origin the integral is of order 
unity. Furthermore, for r J/3 = y + k the saddle point is at  the origin, thus, the 
mid-point of the transition lies at y + k = r JP. In  fact, 

Thus, like u,,, this term represents a wave whose propagation speed c (in dimen- 
sional form) is the Alfven speed; however, this wave has an hpparent starting time 
which is t ,  = R/c (i.e. 71 = k/J/3).  This is precisely the time required for the 
transmission of a wave from the pipe to the origin and back to the pipe.? Thus, 
the u1 term represents a wave which has reflected from the core after initiation at 

t Note that the time to travel from r = 0 to r = R in the ambient field H = H,R/r is 
exactly half the time required to go the same distance in a uniform field H,. 
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the pipe and has arrived late at y. The next term in the series will give another 
wave, whose history involves transmission to the core, reflexion back to the pipe, 
a return to the core, and finally transmission to y. This term is just half as big as u1 
and, in fact, all subsequent terms decrease in size as a geometric series. The 
contribution of Q is quite different since the integrand associated with Q is not 
singular at  the origin or anywhere on the imaginary axis of the s-plane. There can 
be no contributions of the foregoing type and, in fact, Q merely yields shape 
corrections to the u,. Each of these corrections tends to zero as t -+ 00 (see figure 2). 

r - R  

FIGURE 2. Curve a, U&T, co); curve b, U(T,  t )  ; curve c, U(T, co). 

If we had let k --f 00 with s =!= 0 in the g(m, s) terms, we would have obtained 
u = uo. From a physical viewpoint this means that we would have suppressed 
the reflexions from the core; such a suppression would imply that we had not 
solved a cylindrical problem, but had studied some more artificial situation. In  
fact, uo is the solution one obtains by a direct attack on the flat plate problem 
discussed in the introduction. Note that 2u0(y, co) = 1 + e - g d p  and that uo 3 4 as 
y -+ co ; it  follows that E( y, co) cannot be zero and direct calculation of E confirms 
this. 

On the other hand, if we let t -+ co first, the rigorous inversion of U gives 

u(y,co) = e-gdp. 

Thus, the velocity vanishes far from the plate, E cun be zero, and no physical 
requirements are violated. 

When E + 1, the analysis is more difficqlt. However, the nature of the result 
can be deduced by noting that the first wave to arrive at a position y in the 
cylindrical problem would be very closely related to the direct solution of the flat 
plate problem for the same B .  This flat plate solution describes a wave which 
differs from that of the e = 1 case in that the velocity uo behind the wave front has 

the form uo N a+(l-s)e-r”, 

where a = , /e/(l  + J B ) ,  y = ,/(q?). 
In  the cylindrical problem, the first reflexion will replace part of the first term 

of Uo by a further e-yv contribution and the entire wave sequence will lead to 
a velocity distribution (for large R) 

u(7,co) - e-yu. 
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The quantitative description of these waves could be obtained by appealing 
directly to asymptotic techniques for solving (4.1) to (4.3) for large k; how- 
ever, it  is not clear that the further clarification so achieved would justify the 
labour involved. 

Perhaps the most useful lesson to be drawn from the foregoing is the reminder 
that the replacement of conceptually acceptable three-dimensional problems by 
more tractable two-dimensional ones must be carefully justified. The specification 
of the manner in which current paths are closed and the implications regarding 
the induced fields must be consistent with the formulation of the two-dimensional 
problem. 
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